|
Mineralogy is an active science in which minerals are discovered or recognised on a regular basis. Use of old mineral names is also discontinued, for example when a name is no longer considered valid. Therefore, a list of recognised mineral species is never complete. The International Mineralogical Association (IMA) is the international group that recognises new minerals and new mineral names. However, minerals discovered before 1959 did not go through the official naming procedure. Some minerals published previously have been either confirmed or discredited since that date. This list contains a mixture of mineral names that have been approved since 1959 and those mineral names believed to still refer to valid mineral species (these are called "grandfathered" species). Presently, each year about 50-60 new mineral species are officially approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association. The IMA/CNMNC administrates c. 6,500 names,〔(List of minerals )〕 and the Handbook of Mineralogy lists 3,803 species.〔(Handbook of Mineralogy )〕 In mid 2015, the IMA Database of Mineral Properties/ Rruff Project lists 5,026 valid species (IMA/CNMNC) of a total of 5,232 minerals. There are 1,289 Pre-IMA minerals. The Webmineral.com lists 2,722 published and approved (IMA/CNMNC) minerals, 1,627 pre-IMA minerals, 81 discredited minerals (IMA/CNMNC status), 2,691 synonyms, 149 approved minerals but without a published description yet and 123 not approved names.〔(A to Z Listing of Minerals )〕 __NOTOC__ Due to the length of this list, it is divided into alphabetical groups. The minerals are sorted by name. * List of minerals A (complete) * List of minerals B (complete) * List of minerals C (complete) * List of minerals D (complete) * List of minerals E (complete) * List of minerals F (complete) * List of minerals G (complete) * List of minerals H (complete) * List of minerals I (complete) * List of minerals J (complete) * List of minerals K (complete) * List of minerals L (complete) * List of minerals M (complete) * List of minerals N (complete) * List of minerals O (complete) * List of minerals P–Q (complete) * List of minerals R (complete) * List of minerals S (complete) * List of minerals T (complete) * List of minerals U–V (complete) * List of minerals W–X (complete) * List of minerals Y–Z (complete) * List of minerals (synonyms) * Abbreviations: * *" *" – discredited (IMA/CNMNC status). * *"s.p." – special procedure. * *Q or "?" – questionable/doubtful (IMA/CNMNC, mindat.org or mineralienatlas.de status). * *N – published without approval of the IMA/CNMNC, or just not an IMA approved mineral but with some acceptance in the scientific community nowadays. The 'IMA database of mineral properties' (rruff.info/ima) has 173 species with 'not an IMA approved mineral' tag, some are an intermediate member of a solid solution series, others are "recently" discredited minerals.〔 * *I – intermediate member of a solid-solution series. * *H – hypothetical mineral (synthetic, anthropogenic, etc.) * * *ch – incomplete description, hypothetical solid solution end member. Published without approval and formally discredited or not approved, yet. * * * * Mainly: pyrochlore, tourmaline and amphibole supergroups, arrojadite, and yftisite-(Y). IMA/CNMNC revisions generate hypothetical solid solution endmembers. * *group – a name used to designate a group of species, sometimes only a mineral group name. == Clockwork == * The name of a new mineral is an IMA secret until it is approved or until its full description is published, its authors' option (approved decision: 'IMA2009-D').〔(【引用サイトリンク】url=http://pubsites.uws.edu.au/ima-cnmnc/newminerals2010.pdf )〕 The IMA uses a code for its own procedures for the supposed new mineral (and so it is a synonym). Ferri-ottoliniite's proposal got code 'IMA2001-067', it was redefined and approved as 'IMA2001-067a' in 2003, for instance (the ottoliniite root name is discredited since 2012).〔 * Current IMA regulations do not allow substances of anthropogenic origin (burning coal mine dumps, coal mine fires, slag, etc.) to be validated as a mineral species. Since 1998, the majority of polymorphs (especially polytypes and polytypoids) are not regarded as separate mineral species anymore. * Current regulations do not allow a new mineral name to honour a person a second time. But there are exceptions: Jöns Jakob Berzelius (1779–1848) (berzelianite and berzeliite), and Leo Neal Yedlin (1908–1977) (yedlinite and nealite). The regulation does not affect mineral series and other variations (prefix clino, meta, para, pseudo etc.). For instance: Karl Hugo Strunz (1910–2006) (strunzite group), George P. Merrill (1854–1929) (merrillite series, whitlockite group), Edward S. Grew (Ph.D. 1971) (edgrewite series, humite group). * IMA/CNMNC identifiers are written without space many times, as years don't get meaningful hits on Google search. * "The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana" (7 ed.) was the reference of CNMNC/CNMMN's (IMA) initial work. At the Kobe 2006 general meeting, the IMA council endorsed the creation of an Internet site on minerals ('rruff.info/ima'). So a Master List was needed and the older minerals got reviewed, a document of 130 pages. The final GQN List got published (grandfathered, questionable and published without approval) after a final review of Burke E A J and Nickel E H (approved decision: 'IMA2006-C'). Not only the well established minerals before 1959 got grandfathered (G), but the minerals that could not be discredited as well. The merging of the 'ARD List' (approved, revalidated and discredited) with the 'GQN List' resulted in the first 'IMA/CNMNC List of Mineral Names'. The 2007 draft of the 'IMA/CNMNC List of Mineral Names' was a courtesy of the Materials Data, Inc. (MDI), its 2009 review got important modifications. The RRUFF database was built with the help of the MDI's 2007 draft, the IMA Master List is an update of the MDI's 2009 review. Some grandfathered minerals got their status changed to approved afterwards, based on IMA approved reports. Note: the list of approved minerals got revised with 'The New IMA List of Minerals (September 2012)'. * The IMA was founded in a meeting in Madrid (1958). The CNMMN (now CNMNC) was one of the original eight commissions, it was founded in 1959. Not all grandfathered mineral were first described prior to 1959. Hatrurite, a phase in cement clinker (alite, C3S), was first described in 1977, for instance.〔(MinDat - Hatrurite )〕 * Some mineral names got a revision, this changed their first letters. Sodium-pharmacosiderite is now natropharmacosiderite, natroapophyllite is now fluorapophyllite-(Na), for instance. But 2010, hydroxylapatite, fluorapatite, fluorellestadite and chlorapatite got their old names back. *Everything is slower on earth sciences, geology, mineralogy: * * Georgius Agricola's De re metallica libri xii though apparently finished in 1550, was published 1556 (the author died 1555). * * Some IMA/CNMNC (1959–2000) approved minerals had their complete description published only 2012: 'IMA1998-018' (fluornatromicrolite, published 2011), 'IMA1987-046a' (ferrolaueite, published 2012), 'IMA1978-064' (approval probably based on fake data), 'IMA1977-006' (whelanite, published 2012) and 'IMA1968-003' (discredited, 'IMA2008-B'). 'IMA1995-025' was listed as well, a mistake (natroglaucocerinite, published 1995).〔 * * The paper of Armbruster et al. (2006) missunderstood the naming rules and renamed a well established mineral name (hancockite). Hatert et al. (2013) modified the naming rules. And proposal IMA2015 s.p. got accepted, reverting the renaming. * * Sample: bergenite got discredited as a barium bearing mineral variety of phosphuranylite (IMA1962 s.p., special procedure). So phosphuranylite was already a valid mineral, and it is listed in the Michael Fleischer's mineral list (1966). Both are listed as grandfathered minerals as they are not listed in the 'ARD List' (approved, revalidated and discredited minerals; 2004). * * The review and approval of new mineral is straight forward most of the time, but there are exceptions. Proposal IMA2009-096 was not accepted, proposal IMA2009-096a got approved as fontarnauite (6.DA.60) in 2014. Proposal IMA1995-020 was not accepted, proposal IMA1995-020c got approved as jarandolite (6.CB.25).〔 * * Some minerals were published without being submitted to IMA approval. * * * Imogolite, 9.ED.20, was first published 1962. Its formal discreditation by the IMA was published 1967, as its description was incomplete. The IMA referred it to the AIPEA (''Association Internationale Pour l'Étude des Argiles'') for advice and it was approved by the AIPEA (Nomenclature Committee) at its Tokyo meeting (1970). Fleischer (1983) described it as a variety of allophane and it was finally redefined and approved by the IMA/CNMNC 1986. * * * Amorphous allophane, nanotube-like imogolite (), halloysite-10Å (), halloysite-7Å () and gibbsite () are thought to be products of tuff weathering. * * Every year some valid names get discredited (in the broader sense). * * *Ramdohr (1936) discovered that the type material of schapbachite (Ag0.4Pb0.2Bi0.4S) was a mixture of galena (PbS) and matildite (AgBiS2).〔(Mindat.org - Schapbachite )〕 It was discredited (1982) as it was found unstable at 'standard temperature and pressure' (STP). It was revalidated (2004) as Pb-bearing schabachite is stable at STP. The type locality isn't Schapbach now, but Silberbrünnle Mine, Gengenbach; both Black Forest localities. * * * Tohdite (hydrous alumina) was conditionally approved as 'IMA2004-051'. But the re-examination of the holotype material of akdalaite ((Al2O3)5·H2O, 'IMA1969-002') from the Fersman Mineralogical Museum in Moscow showed that both minerals were identical (space group got corrected).〔(Mindat.org - Tohdite )〕 * * * Tellurocanfieldite was conditionally approved as 'IMA2012-013'. Its approval was withdrawn as further studies showed it to be a Te-rich variety of canfieldite (Y: 1894, 2.BA.70).〔(Mindat.org - Tellurocanfieldite )〕 * Some old minerals were known before their 20th century names were first published. * Silicate perovskites, argentite and β-quartz are not valid minerals, as they do not occur on Earth's surface (standard temperature and pressure, STP). The type material of bridgmanite is from a meteorite. Some minerals are unstable on Earth's surface (metastability): diamonds, cohenite and haxonite, for instance. Acanthite var. argentite (a pseudomorph after argentite) is sometimes sold as argentite.〔(Argentit (German) )〕 *Other curiosities: * *Niggliite (former 1.AG.60, year: 1938), sorosite (former 1.AC.15, IMA1994-047), yuanjiangite (former 1.AC.15, IMA1993-028) are not classified as tin alloys (PGE-metal alloys and indium-tin family) in ''Fleischer's Glossary''. But, they are stannide minerals (nickeline mineral group), sulfide mineral class. * *Tiragalloite (9.BJ.25, IMA1969-061, Mn42+(HAsSi3O13)), is an arsenosilicate and grenmarite (9.BE.25, IMA2003-024, (Na,Ca)4(Mn,Na)(Zr,Mn)2(Zr,Ti)(Si2O7)2(O,F)4) is a zirconium silicate (analogous to the more common aluminosilicates, borosilicates and titanium silicates).〔(MinDat - Tiragalloite )〕〔(MinDat - Grenmarite )〕 * *Mostly anthropogenic minerals: abhurite (3.DA.30), lausenite (7.CB.70), guildite (7.DC.30), hoelite (10.CA.15), calclacite (10.AA.25). * *Studtite (4.GA.15, year: 1947) is the first peroxide mineral, the facies radioactivity generate peroxide. * *Ianthinite (4.GA.10, year: 1926), U(IV) is one of the constituents of the mineral), it gets a layer of schoepite/ metaschoepite in the presence of oxygen. * *Polyoxometalates: * * *Menezesite (4.FN.05, IMA2005-023) and aspedamite (IMA2011-056), are the only natural heteropolyniobates known. * * *Ophirite (IMA2013-017) is a mineral with a heteropolytungstate tri-lacunary keggin anion. * * *Melcherite (IMA2015-018) and peterandresenite (IMA2012-084) have a lindqvist anion. * *Inosilicate, biopyriboles: * * *Jimthompsonite (IMA1977-011) is a triple chain inosilicate. * * *Chesterite (IMA1977-010) is a connected double chain inosilicate. * *Inosilicate, double dreier chains: * * *Xonotlite (Y: 1866) is an inosilicate with double dreier chains. * * *Chivruaiite (IMA2004-052) is an inosilicate double dreier chains of (SiO4) tetrahedra. * * *Zorite (IMA1972-011) is an inosilicate double dreier chains of (SiO4) tetrahedra. * * *Haineaultite (IMA1997-015) is an inosilicate double dreier chains of (SiO4) tetrahedra. * *Other inosilicates: * * *Veblenite (IMA2010-050) has a veblenite ribbon (Si8O22). * * *Yangite (IMA2012-052) is an inosilicate with two-connected double chain. * * *Yegorovite (IMA2008-033) is an inosilicate with single zig-zag chains of Si tetrahedra. * *Icosahedrite (IMA2010-042), the only natural quasicrystal known. * *Comancheite (IMA2013-B/ IMA1980-077, former 3.DD.65) is a mercury nitride mineral now. * *α-Sulfur (old); chemical formula unit with 1 atom; unit cell with 128 formula units (Z). * *Whitecapsite (IMA2012-030), chemical formula: H16Fe2+5Fe3+14Sb3+6(AsO4)18O16·120H2O; unit cell with 1 formula unit (Z). * *Megacyclite (9.CP.10, IMA1991-015); chemical formula unit with 111 atoms; unit cell with 4 formula units (Z). * *Labyrinthite (9.CO.10, IMA2002-065); chemical formula unit with 278.5 atoms; unit cell with 3 formula units (Z). * *Ashcroftine-(Y) (9.DN.15, year: 1933); chemical formula unit with 180 atoms; unit cell with 4 formula units (Z). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「List of minerals (complete)」の詳細全文を読む スポンサード リンク
|